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PSEUDOPRIMES FOR HIGHER-ORDER 
LINEAR RECURRENCE SEQUENCES 

S. GURAK 

ABSTRACT. With the advent of high-speed computing, there is a rekindled inter- 
est in the problem of determining when a given whole number N > 1 is prime 
or composite. While complex algorithms have been developed to settle this for 
200-digit numbers in a matter of minutes with a supercomputer, there is a need 
for simpler, more practical algorithms for dealing with numbers of a more mod- 
est size. Such practical tests for primality have recently been given (running in 
deterministic linear time) in terms of pseudoprimes for certain second- or third- 
order linear recurrence sequences. Here, a powerful general theory is described 
to characterize pseudoprimes for higher-order recurrence sequences. This char- 
acterization leads to a broadening and strengthening of practical primality tests 
based on such pseudoprimes. 

1. INTRODUCTION 

Efficient, practical tests for primality have recently been given in terms of 
pseudoprimes for certain second- or third-order linear recurrences [1, 5, 11]. 
The utility of these tests rely on the quickness of the algorithm (deterministic 
linear time) and the scarceness of pseudoprimes in the test range. In a recent 
paper [9] I refined and strengthened those pseudoprimes that involved Lucas 
sequences. Here I wish to extend these results to higher-order sequences. The 
methods developed will enable one to devise much stronger tests (fewer pseu- 
doprimes) of comparable efficiency. 

To begin, I review some of the types of pseudoprimes that have appeared in 
the literature and mention what is known concerning their distribution. The 
first pseudoprimes studied [15] were based on Fermat's criterion. Let c be an 
integer greater than 1. An (ordinary) pseudoprime to base c (or pspc) is a 
composite number N, (c, N) = 1, for which CN 1 (mod N). A strong 
pseudoprime to base c is an odd composite number N, (c, N) = 1 , for which 
either (i) Cd -1 (mod N) or (ii) Cd2_ -1 (mod N) for some r with 
O < r < s, where N - 1 = d .2S, d odd. 

Such kinds of pseudoprimes where shown to be rare, but not too scarce. 
Pomerance [13] has shown for ordinary or strong pseudoprimes, base c, that 
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the number of pseudoprimes not exceeding x is bounded above by 

(1) x exp{- log x log log log x/2 log log x} 

for all sufficiently large x. For the best lower bounds, see Pomerance's work 
[14]. 

Baillie and Wagstaff [5] introduced analogs for ordinary pseudoprimes based 
on Lucas sequences and obtained similar results concerning their distributions. 
In [9], I strengthened their characterization of pseudoprimes for those Lucas se- 
quences which arise from resolvents of certain irreducible polynomials having 
dihedral Galois group of order 6, 8, or 12. That treatment defined pseudoprimes 
using sequence signatures and was motivated in part to fully exploit the periodic 
and recursive properties of the sequences. I indicated there that the techniques 
employed had a broader application to higher-order linear recurrence sequences 
than that of strengthening Kurtz, Shanks, and Williams' characterization [11] 
of pseudoprimes for certain third-order recurrences. It is this far-reaching gen- 
eralization that I wish to develop here. 

I shall begin by outlining some preliminary results on matrix subrings in ?2 
which will be critical later on. In ?3, I will give suitable higher-order analogs for 
the classical Lucas sequences. Recall that if /? and /? are conjugate irrational 
roots of p(x) = x2 + a x + a0, where a0, a, are integers with a, :$ 0, then 
the Lucas sequences U and V corresponding to p(x) are given by 

n 
-/3n (2) ,n (n > O) 

and 

(3) Vn 
n 

, + -#n (n > 0). 

Their higher-order analogs provide the basis for characterizing pseudoprimes for 
higher-order linear recurrences in ?4. In the final section, this characterization 
of pseudoprimes is further strengthened for sequences which arise from resol- 
vent polynomials. The methods employed rely heavily on the deeper arithmetic 
properties associated with Lagrange resolvents. 

For the sake of simplicity, I shall only treat linear recurrences defined over Q. 
But the theory can be adapted to the more general setting of linear recurrences 
defined over an arbitrary number field. 

2. SOME REMARKS CONCERNING MATRICES 

In order to characterize pseudoprimes for higher-order sequences, I will need 
some elementary results from the theory of matrices over commutative rings. 
Let R denote a commutative ring with unity 1, and Rx the multiplicative 
group of invertible elements in R. Let Mm(R) be the ring of square m x m 
matrices with entries from R, and GLm(R) the group of those matrices M 
with det(M) in Rx. Consider any monic polynomial p(x) in Z[x] of degree 
m > 0, say 

p(x) = xm + a ,x 
M- 

+ +a^r 
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and associate with it an m x m matrix 

0 1 0 0 . 0 
o 0 1... 0 

(4) A= 
o o *-- 1 

-aO -al -a2 -am-1 

considered as an element of Mm (R) in the natural manner. Let MA(R) be the 
subset of Mm(R) consisting of those matrices of the form 

x1 X2 ... Xm 

(X1 X2 ... Xm)A 

-(X1 X2 xm)Am 1 

for some x =(xl,..., xm) in Rm. It is clear that 

m 

Mx= E XiMe, 
i=1 

where ei denotes the vector of Rm with 1 in the ith component and zeros 
elsewhere. Since Me = Aj'1 (1 < j < m) and p(A) = Om the m x m zero 

matrix, one has the following 

Proposition 1. The set MA(R) is a commutative subring of Mm(R) containing 

the identity matrix Im . As an R-module, MA (R) is spanned by the powers Aj 1 

(1 < j<m). 

We remark that in case p(x) is irreducible, say with root ,6, and R = Q 
then it can be shown that MA(Q) - Q(fl) and that the multiplication MZ = 

MxMY is that induced by multiplying 

(XI + X23 + * 
.. 

* XmflM- )(YI + Y29 + ... + Ymfm 1) 

= (ZI + Z2/3 + .. + Zm/im I) 

in Q(fl) with respect to the basis {f1 fli.., flm -} 
Now consider any linear recurrence sequence W = ('K) with values in R 

satisfying the recursion 

(5) Wn+M + am-l Wn+m-i + **+ aaoW O (n > 0). 

Write 

Wd WIW.d. WM[i I 

det(W) = det1 
W 2 .. .~ 
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Proposition 2. Let W0, W1, .. ., Wmr I be any values in R. If det(W) E RX, 
then there is a unique matrix C in MA(R) satisfying 

(6) C= 

-. WM - L 
Wm-I l 

Proof. The matrix equation (6) is equivalent to solving 

XIWO +xX2 WI + * * +XmWm- I WO 

*~~m 2-2 - r-i 
I wM-I +2 w + *-- + XmW2m-2 = M-I 

for some C = Mx with x E Rm. Since det(W) E Rx by hypothesis, one can 
use Cramer's rule to find a unique solution x = (xl, ..., .xM). o 

Before concluding this discussion, I would like to make a remark pertain- 
ing to the computation of any sequence W = (Wm) defined over R and 
satisfying (5). For the most part one wishes to find m consecutive terms 

WN' WN+1...' WN+mr- 1 which amounts to finding the matrix power AN, 
since 

WO WN 

AN [WIl = WNti+ 1 

-Wm- I N+m-1 I 

There is, of course, a standard technique to do this, requiring at most 2 10g2 N 
matrix multiplications, which relies on the binary representation of N. 

3. HIGHER-ORDER ANALOGS FOR LUCAS SEQUENCES 

The Lucas sequences (2), (3) introduced in ? 1 satisfy fundamental identities 
found by Lucas. To name two of them, 

(7) 2J/n+k= VnJVk +AUnUk 

and 

(8) 2Un+k= Un Vk + Uk Jn 

for n , k > O. where A = a2- 4a0 is the discriminant of x2+ x+ 5 a, 0 0 
[12]. The sequence U is a divisibility sequence; that is, U0 = 0, U1 = 1, and 
if NJ U,, then NI Uk, for all k > 1. In particular, if N is a positive integer 
prime to ao, there is a least positive integer w for which NI U,. (This value 
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co = w(N) is called the rank of apparition of N in the Lucas sequence U.) 
When N is prime and N t 2a0A, it is known that 

(9) w(N) N- (A/N) 

and that 

(10) w(N r) Nri w(N) for r > 0. 

The periodicity properties of the sequences U and V are well documented 
[12, 18]. For a positive integer N with (N, 2a0A) = 1, both sequences have 
a common period 7 = 7r(N), modulo N and w(N)t17(N). In addition, the 
set of values B = BN = {Uk ,+110 < k < 7n/w} forms a multiplicative group 
(mod N), known as the group of multipliers of U for the modulus N. In fact, 
BNis cyclic generated by the term U,,+, (mod N). 

My purpose here is to introduce higher-order analogs of the Lucas sequences 
U and V, which will make particularly convenient choices later in characteriz- 
ing pseudoprimes for higher-order linear recurrences. The sequences introduced 
possess properties similar to those just mentioned for Lucas sequences. With 
this goal in mind, I define sequences U = (Un) and V = (V/n) by 

fl ... fn m-i1 m-1 -1 

(1 = m-2 /m-2 /m-2 m-2 (n ), 
Un 

(12) V =l +...+gm (n >0), 

where the /3i are distinct roots of some monic polynomial 

(13) p(x) =amxm +*** +ax+ ao, a = l, 

in Z[x] of discriminant A = A(p(x)). Both sequences are integer-valued and 
satisfy the recursion 

(14) Wn+m + ami1 Wn+mil + * * * + a, 9n+, + aOWn = 0 (n > 0). 

I note that U is a generalized "divisibility" sequence in the sense that UO = 

Ul = .= Um2 = 20 UmI = 1, and if N divides m - I consecutive terms 
Uw, Uo+ ..., UWo+mr2' then N divides Ukc,, Uk W+i ..., Uk+m-2 for k > 
1 . This divisibility property and other similarities with the Lucas sequence (2) 
were noted by H. Duparc [8]. I shall give a separate, self-contained treatment 
of some of these similarities here. The divisibility property is an immediate 
consequence of the following result. 

Proposition 3. For any wo, k > 0, 

(i) GCD(UW,, Ucli, 5 ...* UCo+m-2)1 GCD(Ukto,, Ukco+l, 
.. ., Ukwo+mr2) , 
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(ii) Ukw+m-l 1Urc+m-1* Usw,+m-1 (mod GCD(UW, U.+,..., Uw+m92)) 
if k = r+s with r, s > O, and 

(iii) Ukw+m-1 =-U+mi (mod GCD(UW, U,+ 1..., U+m-2)). 

Proof. I shall first establish that 

(15) Uw+r-Uw+m Ur (mod GCD(UW, U,1+,*, U+m9) 

for all r > 0. Since both (Ur) and (Uw+r) satisfy (14), it suffices to verify that 
(15) holds for any m consecutive values of r, say 0 < r < m - 1 . But this is 
immediate, since U0 = U1 = = Um-2 = 0 Um-i = 1 . 

Now (i) follows easily from (15) using induction on k, as does (iii). To 
establish (ii), note that for r, s > 0 

U -l--Ur -l and Us =U+m sl+m- 

mod(GCD(U., U,1,..., Uw+m92)) by (iii). Thus, 

Ukw0+M IU C =- U U 
- +m-1 U rw+m- I s+m-1 

mod(GCD(U., U+, ..., Uw+m2)) for k = r + s with r, s > O. If either 
r or s is zero, the result (ii) holds trivially. This completes the proof of the 
proposition. o 

The question naturally arises as to whether or not there is a rank of apparition 
of N in the sequence U. To settle this, one has 

Proposition 4. Suppose N is an odd positive integer prime to aO, and that N 
divides Uk, Uk+l ..., Uk+m-2 and U1, U+1 ... Ul+m-2 forsome , k > O. 
Then N divides Uj, Uj+1, ..., Uj+m-2' where j = GCD(I, k). 
Proof. It suffices to show that N divides Ulk - Uk-k+l '.. Ul-k+m-2' as- 
suming I > k. I assert that if (N, ao) = 1, then Uk+m-l is prime to N. 

Suppose otherwise, say GCD(N, Uk+m_ ) = d > 1. Since (d, ao) = 1, we 
get dtUkl from (14). Repeating this argument shows that U is the zero se- 
quence (mod d). This contradicts the fact that UMrn = 1, so the assertion 
that (Uk+m_ I, N) = 1 is valid. 

I now show that N divides Ulbk, U1-k+1' Ul-k+m-2 Observe that 
since (Uk+mr 5, N) = 1, 

(16) Ui+rI Uk+r U (mod N) 
k+m-1 

for 0 < r < m - 1. The congruence (16) actually holds for all r > -k 
since both (Ul+r) and (Uk+r) satisfy the recursion (14), and (N, ao) = 1 . In 
particular, we get Ul-k U1 k+1 5 - Ul-k+m-2 0 (mod N). n 

From Proposition 4 it follows that for any N with (N, ao) = 1, there is a 
least positive integer wo = wo(N) for which N divides U.,, U+ 1, ..., UWO+m-2 . 
(I shall refer to w(N) as the rank of apparition of N in the sequence U.) Let 
t = t(N) be the order of Uw1+m_l (mod N). (Note from the argument in the 
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proof of Proposition 4 above that (N, U.+m, ) = 1.) It follows from (iii) of 
Proposition 3 that the set B = BN = {Ukw+m 1 (mod N)t 0 < k < t} is a cyclic 
multiplicative group modulo N. Following the classical terminology, we refer 
to BN as the group of multipliers of U for the modulus N. The period of 
U modulo N, denoted 7r = 7r(N), is the product wc(N) x t(N). When p(x) 
is irreducible, it easily follows from properties of finite fields that for a prime 
P t A , 

(17) 7 (P) ((p) 

and 

(18) ,(pr) p ,r-l7(p) for r > 1, 

where 5(p) = LCM plpfpAP) - 1} . Here, the LCM is taken over all Q(fl)-primes 
p lying above p and f(p) denotes the residue degree of , in Q(fl)/Q. More 
generally, for any modulus N with (a0, N) = 1, 

(19) 7,(N) = LCM 7(pV), 
PvIIN 

where p ranges over the distinct prime divisors of N. 
For a numerical illustration, consider the polynomial p(x) = x3 - x - 1 of 

discriminant A = -23. The sequence U satisfies Un+3 = Un+1 + Un. The first 
29 terms starting with n = 0 are 

0, 0, 1, 0, 1 1,; 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 

49, 65, 86, 114, 151, 200, 265, 351, 465, 616, .... 

The values w(N) and 7r(N), and the set BN, are tabulated below for N = 

2, 3, 4, 7. 

N w)(N) 7r(N) BN 
2 7 7 {1} 
3 13 13 {1} 
4 14 14 {1} 
7 16 48 {2, 4, 1} 

Let us now turn to the companion sequence V in (12), demonstrating certain 
identities relating V with U, including one which is the analog of (7). 

Proposition 5. The sequences U and V satisfy the following identities: 

Vn+k Vn+m-2 Vn 
Ykrn-2 V~m4..V- 

(20) UfUkA Vrn-4 Uk-2 (n, k > 0), 

Vk ..Vm_2 * V 
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m 

(21) Un = bk Vn+k-I (n O ), 
k=1 

where 

V2m-3 V2m-4 V2m-(k+2) V2m-(k+4) Vm-2 

(-1 - V2m-4 V2m-5 V2m-(k+3) V2m-(k+5) Vm-3 
bm-k+1 A 

Vm-1 Vm-2 rVmn-k VMr(k+2) VO 

(1 < k <m), 

and 
m 

(22) Vn =>ZkakUn+k-l (n 0). 
k=1 

Proof. To establish (20), consider the product 
in ... fn k rn ..-2 I M ~~~~fi1 fi1 

im-2 ... fm-2 k rm-2 fi2 fi2 . . 

1 1 fik /m-2 1 V V~~9 
1n+k Vn+m-2 Vn 

Vk+m-2 V2m-4 ... VM-2 

Vk Vm_ .n2 VO 

Since 
flm-1 ... m-1 2 

A - fim-2 ... m-2 

1 ... 1 

it follows from (11) that the right-hand side of (20) is Un Uk A. Now observe 
that (21) is just (20) with k = m - 1, where the right-hand determinant has 
been expanded by minors using the top row. 

It remains to verify (22), but since U and V satisfy the same recursion 
(14), it is enough to check the identity for 0 < n < m - 1. Replacing k by 
m - k + 1 in the right-hand side of (22) and then re-indexing yields an equivalent 
expression 

m-i 

1 (m - k)am-kUn+m-k-I (n > 0). 
k=O 

From Newton's identities [7], each term (m - k)amrk may be replaced by the 
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sum k amk+, Vi (0 < k < m - 1) to yield 

m-1 k 

E m-k+y j J n+m-k-1 
k=O (kJ=') 

or equivalently, 

m-1 (m-1 

(23) E1 Vj ( 
am-k+jUn+m-k-1 

j=0 k=j 

upon changing the order of summation. I claim that the inner sum, for 0 < 

n < m- 1, is just the delta function cJn (JYn = 0 for j :A n and 1 when 
j = n), so that (23) evaluates to Vn for 0 < n < m - 1, thereby proving (22). 
To verify the assertion, I consider the cases j > n and j < n separately. 

Case (i): j > n. Here, direct evaluation yields EmZ=J am k+jUn+m~k~ l = 
0 if 

j > n or amUmi = I if j = n. 

Case (ii): j < n . Here, one can enlarge the sum Em ak+jn+mk to 

ZkMjJ am k+j Un+m-kl1 5 since all additional terms am k+j n+m-k-1 are zero. 
(Note that m < k < m+j-1 implies 0 < n-j < n+m-k-1 < n-1 < m-1 
here.) But since U satisfies (14), the padded sum, as well as the original, are 
both zero. n 

Remark. Identity (20) generalizes the Lucas identity (7), but there seems to be 
no analog of (8) for higher-order sequences. 

The question naturally arises as to when V, or for that matter, any integer- 
valued sequence W satisfying (14) has the same period as U modulo N. This 
situation is governed by the following theorem. 

Theorem 1. Suppose W is an integer-valued sequence satisfying (14). For any 
N relatively prime to aO and any k > 0, 

(24) Wkw+r-Ukcw+mlW, (mod N) (r > ?) . 

Moreover, if also (N, det(W)) = 1, then W has the same period 7(N) as U 
modulo N. (Here, w = w(N) is the rank of apparition of N for the sequence 
U.) 

Proof. For any fixed k > 0, to demonstrate (24), it is enough to verify that it 
holds for 0 < r < m - 1, since (Wkco+r) and (W9) both satisfy (14). Observe 
that this is automatically true when W = U from the definition of W(N). 

Thus, the matrix C = A satisfies 

(25) CUk+ml (mod N). 
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But C = Ukw+rn 1 
*-I 

also satisfies (25), so by Proposition 2, A = Ukw+m im 

(mod N). Thus, 

WO WO 
Akw -Uk+m -l (mod N), 

-Wm-1- -Wm-1- 

or equivalently, (24) holds for 0 < r < m - 1 . 
Incidentally, the congruence (24) readily implies that the period 7rw(N) of 

W modulo N divides 7r(N). Now suppose that N is prime to det(W), too. 
Since 

WO WO 
A;TW(N) (mod N), 

_ wm-i _ L wm-i - 

it follows from Proposition 2 that Aw (N) IM (mod N) . But then, UX (N)+r= 

Ur (mod N) for 0 < r < m - 1, so 7r(N) divides 7w(N) Thus 7rw(N) = 
7r(N). The proof of the theorem is now complete. 5 

4. PSEUDOPRIMES FOR THE SEQUENCES U AND V 

In this section I shall characterize pseudoprimes for higher-order linear re- 
currence sequences. It is convenient to consider the sequence V first; so again, 
let 

p(x) = x + am-lX + *** + alx + ao 

be irreducible in Z[x], as in the previous section, with discriminant A. (The 
coefficients ai may be rational but are chosen here to be integral to simplify 
the exposition.) Denote the splitting field of p(x) by L and its Galois group 
by G = G(L/Q). Let A(L) be the discriminant of L/Q. For a E G, set 

m 
(26) r = Za(/i3)/3[ (O < r < m-1) 

i= 1 

If p is a prime not dividing a0A A(L), then the m consecutive terms 
P, V+,.,+m,-1 satisfy 

(27) J/+rEJa r (modP) (O < r < m-1) 

for any L-prime p lying above p with Frobenius symbol ((L/Q)/p) = a. 
This fact easily follows from the definition of the Frobenius symbol, since, in 
particular, 

(28) flp a (fi) (mod p) (I < i < m). 

The congruence (27) actually holds in k., the subfield of L fixed by the cen- 
tralizer ZG(a) of a in G, since the values Va r are seen to lie in k. . 
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There is an equivalent way to express (27) in terms of certain matrices C. 
in MA(k,) (a E G). For a E G, let x, = (xl, . x. , Xm) be the unique solution 
of the linear system 

m 

(29) Exjf'j 1 
=a(orA) (1< i < m). 

j=1 

(Here A :$ 0, so one may use Cramer's rule to find that the values Ax1 (1 < 

j < m) are integral in L.) Applying any z in ZG(a) to both sides of (29) 
yields 

m 

E T(Xj)(,r(fld) j= TAT (z(fli)) = a(r(fi)) (1 < i < m), 

j=1 

which shows that z(x,) also solves (29). Since (29) has a unique solution, 

z(X,) = xa; thus x, is fixed by ZG(a) and the x; lie in k, . Now set 

(30) C,=Mxa foraeG. 

Observe that, from (29), 

(31) CO ] A(f) <(1 i < m), 

so that 

(32) CO, VIl Vo, 

L- 1m- -I Va, m-l I 

It is also clear from (29) or (31) that the C, (a E G) are mutually distinct, 
and that 

(33) p(Ca) =Cpap-l for any a, p E G. 

Now since 

L Vm- 1 I L vp+m- I I 
it follows from Proposition 2 that (27) is equivalent to the congruence 

(34) AP=_ C, (mod p) , 

where p is the ku-prime lying between p and p. 

Before introducing the pseudoprimes for the sequence V, I first specify cer- 

tain sequence signatures. The m-term sequence Ja r (0 < r < m - 1) in (26) 



794 S. GURAK 

shall be referred to as an admissible signature for V corresponding to a. (Ac- 
tually, r need only run over any fixed set of m consecutive integers in (26) 
and (27), but I have chosen 0, 1, . .. , m - 1 for the sake of simplicity. I relax 
this requirement later in some of the examples.) The comment concerning con- 
gruence (27) prompts the following definition. Let N be any composite with 
(N, 2a0A) = 1. Call N a pseudoprime with respect to V, denoted pspv, 
if the terms VN, VN+ l,... , VN+m1- match some admissible signature for V 
modulo it for some L-ideal it with iin z = (N). Equivalently, N is a Pspv 
if 

(35) VN+r-Var (modn) (O<r<m-1) 

for some a E G and ku-ideal n satisfying n n Z = (N) . If N satisfies (35), 
one says N is a 'psv of type C(a), where C(a) denotes the conjugacy class 
of G that contains a. Observe that if (35) holds, then for any p E G, 

VN+r-Vpap-l r (mod p(n)) (O < r < m -1), 
where p(n) is an ideal of kp-pl = p(ku). 

That (35) has equivalents analogous to (28) and (34) is the key in this study 
of pseudoprimes. 

Theorem 2. A composite N with (N, 2a0A) = 1 satisfies (35) if and only if 

(36) AN _ C, (modn) 
if and only if 

(37) 
N or (mod_) (I < i < m) 

for any L-ideal ft with nf n k.= n. 
Proof. I will show that (37) -* (35) -* (36) -* (37) to prove the theorem. 

(37) - (35): This direction is immediate from (26). 
(35) - (36): If (35) holds, then AN satisfies 

N~~~~~~~~~~~ 
A [ -[ . ] (mod n) in k,. 

Since N is prime to det(V) = A, it follows from Proposition 2 that A CO 
(mod n) . 

N C 
(36) - (37): If A Ca (mod n), then from (31) 

AN [1 1]= jA [.' ] -(f3A) (mod n) (1 < i < m) 

fmlM j fl jI- l 

for any L-ideal nt with nt n ka= n. In particular, the congruences (37) hold 
modulo any such L-ideal nt. E 

Theorem 2 has several interesting consequences which will be developed in 
the remainder of this section. Among the more obvious ones is the following. 
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Corollary 1. Any pspv N is a PMPao 

Proof. Suppose N is a pspv of type C(a). Then from Theorem 2, 

f>N oa(r3) (mod f) (1 < i < m) 

for some L-ideal it with i n Z = (N). Thus, ((-1)ma0)N _(-)ma0 

(mod N). Since N is odd, a N=a (mod N). E a0 a0 (o ) 

This is an apt time to remark about the distribution of pseudoprimes with 
respect to V. Let ir(x, V) count the number of pspv's less than or equal to 
x. In view of Corollary 1 one immediately gets an upper bound for ir(x, V) 
from (1). 

Corollary 2. ir(x, V) < x exp{- logx logloglogx/2 loglogx} for all sufficiently 
large x, if la0l 1. 

Virtually nothing else is known about the distribution of the pspv's when 
m > 2. It is not even known whether there is such a sequence V for which 
ir(x, V) -- oo as x -x 00. (I exclude here certain degenerate sequences which 
arise when /? is a multiple of a root of unity X, say /? = tC, with t in Z, or 
even t a real quadratic unit; cf. [16].) More intriguing is to determine precisely 
what role the Galois group G plays. One naturally expects pseudoprimes will 
be rarer when G is larger. But for sequences of identical order m, each with 
Galois group of order m, how does the structure of G influence the distribution 
of pseudoprimes, if at all? I give some examples next that demonstrate that 
pseudoprimes for higher-order sequences are indeed very rare. Unfortunately, 
the search range (up to 231 ) is too narrow, and the examples too few, to shed 
any light concerning the questions just raised. More comprehensive testing is 
planned, and the findings will be reported at a later date. 

I first ought to mention that for a given a E G, there may be composites 
N which are pspv's of type C(a) for any sequence V in (12) that is defined 
in terms of the minimal polynomial p(x) for some integral element /? in L, 
(a0A(p(x)), N) = 1, which generates L. Such composites, when they exist, 
will be called L-Carmichael numbers. In view of Theorem 2, I formally define 
L-Carmichael numbers as follows: 

A composite N, (N, A(L)) = 1. is said to be an L-Carmichael number of 
type C(a) if for all /? E L, (i, N) = 1 and /? integral, 

(38) N a(f) (modji) 

for some L-ideal it with t n Z = (N). 
The smallest example is 561 = 3 11 * 17, which is easily seen to be a 

Q(VTB)-Carmichael number of type C(1). 
Since an L-Carmichael number is clearly a Q-Carmichael or ordinary Car- 

michael number, it follows [6] that any L-Carmichael number N is odd and 
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square-free. An equivalent characterization for L-Carmichael numbers is given 
next. 

For any prime p t A(L), let ((L/Q)/p) denote the Artin class of p in L/Q 
and f(p) the residue degree of p in L/Q. Given a conjugacy class C of G 
and any integer v > 0, let CM be the conjugacy class consisting of the vth 
powers of elements in C. 

Proposition 6. Let N be an odd, square-free composite relatively prime to A(L), 
and a E G be of order f . Then N is an L-Carmichael number of type C(a) 
if and only if for all primes pIN there is an integer v(p), 0 < v(p) < f(p), 
such that 

(39) C(a) C (LQ)(P) and Np- (P) 0 (mod P 1). 

Proof. (*-) Let p be any prime dividing N. If (39) holds, then there is an 
L-prime q3p lying above p with ((L/Q)/1p)v(P) = a. In particular, for any 
integral /? in L, (fi, N) = 1, 

(40) ~~~~~~N jP v(P (40) 
N 

=fl = a (fl) (mod P), 

since N- pv(P) = 0 (mod pf(P) - 1) . Thus, if n = fHpIN Tp then fiN a(f3) 

(mod i) . Since ii n Z = (N), one finds that N is an L-Carmichael number of 
type C(a). 

(-*) Suppose N is an L-Carmichael number of type C(a) satisfying (38) 
for some L-ideal ii, and p a prime dividing N. Let 93 be an L-prime ly- 
ing above p which divides fi. Since (38) implies that the map z - ZN is 

an automorphism for the finite field of pf(P) elements, it follows that N _ 
pV(P) (mod pf(p) - 1) for some integer 0 < v(p) < f(p) In particular, 
((L/Q)/9)v(P) = C, again from (38). n 

For the case of a quadratic field L one immediately has 

Corollary 3. Let L be a quadratic field and N > 1 be odd, square-free, and 
prime to A(L). Then 

(i) N is an L-Carmichael number of type a = 1 if and only if p2- 1 IN- 1 
for each inert p I N and p - 1 I N - 1 for each p I N which splits in L; 

(ii) N is an L-Carmichael number of type a :$ 1 if and only if each pIN 
is inert and p2 _ IN-p. 

Using Corollary 3, it is easily checked that 7, 045, 248, 121 = 821 a1231 6971 
and 24,306,384,961 = 19*53,79*89a3433 are Q(v/'T3)-Carmichael numbers 
of type C(1). 

One also has the following lower bound on the number of prime factors of 
L-Carmichael numbers. 

Corollary 4. Suppose N is an L-Carmichael number of type C(a), where ordG a 
= f . Then N has at least f + 2 prime factors. 
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Proof. For each prime pIN, one has from Proposition 6 that N = p (P) 
(modpf(p) - 1) with 0 < v(p) < f(p) and ((L/Q)/qJ)v(P) = a for some L- 
prime 93 lying above p . In fact, f(p) = f * (v (p), f(p)) . Set 3 = max{v (p), 1 } . 
Then N/p pa'1 (modpf - 1), since, if v(p) = 0, then f = 1 and al- 
ready N/p 1 (mod p - 1) . In particular, since (N/p, p) = 1, one has 
N/p > p-1 + pf - 1 or N/p > pf . Taking the product over all prime divisors 
of N, one finds Ng-1 > Nf, where g is the number of prime divisors of N. 
Thus g > f + 1. 5 

Very little is known concerning the distribution of ordinary Carmichael num- 
bers, much less L-Carmichael numbers. For a given normal extension L and 
conjugacy class C of G(L/Q), it is not even known whether there exists an 
L-Carmichael number of type C. From the remark preceding Proposition 6, 
an affirmative answer here would immediately imply that there are infinitely 
many ordinary Carmichael numbers. 

Example 1. Consider p(x) = X3 X - 1 with roots fl1, f2, and 63. Here, 

L = Q(/J1, v'-2) with G = S3, say, generated by the automorphisms a and 
T induced by mappings: 

l1 2 Tf l3 1 

92 ' 3 92 93 

fl3-fl1 3 9 

The admissible signatures for the sequence Jn = / 2 + 3I ~ + 13 (n > 0) with 
fixed choice r = -1, 0, 1 are as follows: 

r V V V 2 VVV2 V1 ,r Va r a V r VT, r Ta ,r 
-1 3 a a 1? 92 13 
o o 0 0 0 0 0 
1 2 - 1 - 1 332 - 2 332 - 2 332 - 2 

2 

Here, a and Ol are conjugate roots of x2 - 3x + 8. The characterization of 
pseudoprimes for V in terms of the sequence signatures above can be checked 
using integer arithmetic modulo N, and is equivalent to that given by Adams 
and Shanks [1]. Kurtz, Shanks, and Williams [11] showed that ir(2 31, V) = 10 
and 7r(50x 109 ,V)= 55. 

Example 2. Consider p(x) = x +xS +3X4 + I lx3 +44X2 + 36x + 32, which has 

a root ,= 431 + 41 +C 4 +C48 +C16 . Here, L = Q(/Jl) is the unique cyclic field 
of degree six and conductor 31, SO G = Z6 is generated by the automorphism 
a which is induced by the mapping C31 -*31 I The admissible signatures for 
the corresponding sequence V for the fixed choice r = -2, - 1, 0, 1, 2, 3 are 
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as follows: 

V1,r ar a r Pa , r Vao , r a r 

-2 -9/8 83/64 145/64 114/64 238/64 -413/64 

-1 6 17/8 -45/8 -7/4 -7/4 17/8 

O -1 -1 -1 -1 -1 -1 

1 -5 -5 -5 26 -5 -5 

2 -25 -25 -25 6 37 37 

3 -125 61 61 -32 -1 61 

Since G is Abelian, each term Vp r (p E G. -2 < r < 3) lies in Q. Up to 

231, there are only two pspv's; namely 775,368,901 = 373 1117. 1861 and 

955,134,181 = 311 * 1303 * 2357, both L-Carmichael of type C(1). 

Example 3. Next consider p(x) = x6 _ (49/36)X4 - (143/216)x3 + X2 + (1 11/6)x 

+ 1 with roots so ordered that its Galois group G = S3 is generated by the 

permutations a = (123)(456) and T = (14)(26)(35) as a subgroup of S6. 

The admissible signatures for the corresponding sequence V with fixed choice 

r=-2, -1, 0, 1, 2, 3 areasfollows: 

r | ViV r Vr a, r V 2 r VT , r Vz r 

-21-H 1R1/ 11(-)6 43(3 Y2 _ Y - 2) 143(3 Y2 -Y2 -2) 243 (3 Y3-Y32) -2 -J 6 11(a - 1)/6 11(7 - 1)/6 216(31 - 2) 16 (32- -2) - 

_~ I I 6 2a 2a 49yI /36 49Y2/36 49Y3/36 
01 0 0 0 0 0 0 

I I 
49 49 - 2(3YI - 2) 2(3Y22 - 2) 2(3Y3 - 2) 

2 143 143a/216 143i:/216 11y1/6 I1Y2/6 IY3/6 

3 -1 
91 191 1916 49 (3Y,2 - 2) 49 (3-Y2-2) - (3Y3-2) 

2 3 

where a , zV satisfy x -3x+8=0 and Y1, Y2, and Y3 satisfy x - x-1 = 0. 

There are only two pspv's< 231, namely, 517,697,641 = 6311 . 82031 and 

855,073,301 = 16883 * 50647, both of type C(1) . 

Example 4. Consider p(x) = X4 - 8x + 4 with Galois group S4, splitting field 

L and roots 

fil =a 1/2 + 1/2 + 1/2 
= 1 +2 + 3 
a1/2 a 1/2 a 1/2 

fi2a1 a2 -3 

=i -a1/2 1/2 + 1/2 
l33 a1 -2 +3 

= - l1/2 + 1/2 1/2 
f64= a1 +2 a3 

where the a1 satisfy x3-x- 1 = 0. The automorphisms of L corresponding to 

the permutations p = (12)(34) and T = (13)(24) generate the Klein subgroup 

H of S4 with fixed field Q(al, -23). The admissible signatures for the 

sequence Jn = 2l +/3+/3 +/4 (n > 0), of type C(a) for a E H, with 
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fixed choice r = -1, 0, 1, 2 are: 

r V VV V 
______ 1 ,r pr pT r VT, r 
- 1 4 4/a1I 4/a2 4/a3 
0 0 0 0 0 
1 0 8al 8a2 8a3 
2 24 -8 -8 -8 

One such pseudoprime for V is 970,355,431 = 22027 *44053 of type C(1). 
I have not computed the pspv's up to 231 , but this may be the only one. 

So far, I have defined pseudoprimes with respect to the sequence V. Let 
us consider now any integer-valued sequence W = (W,) satisfying the same 
recurrence as V. It follows from (28) and the argument of Theorem 2 that if 
p is a prime not dividing 2a0A * A(L), then AP" C (mod , where X3 is 
any L-prime above p and ((L/Q)/43) = a. In particular, 

(41) W _W (mod 3) (0 < r < m-1), WN+r W,,r 

where 

Wu, 0 WO 

(42) [ l =Ca [:1 

- am-l - Wm-, 

The sequence W, r (0 < r < m - 1) is the analogous admissible signature for 
W corresponding to a. The values Wj r lie in k ,so (41) actually holds in 

k. as before. A composite N with (N, 2a0A) = 1 is called a pseudoprime 
with respect to W (or Ppw ) of type C(a) if 

(43) WN+r-Wr (mod n) (0 < r < m -1) 

for some k. -ideal n satisfying nnZ = (N) . For the sequence U, the admissible 
sequence signatures are given by 

(44) U~ t/ Ua 
p'(f31) 

where p'(x) denotes the derivative of p(x). 
Whether one characterizes pseudoprimes using the sequences U or V, the 

notions turn out to be equivalent. More generally one has 

Theorem 3. Suppose W = (Wn) is an integer sequence satisfying (14). For N 
with (N, 2a0Adet(W)) = 1, N is a pspw of type C(a) if and only if N is a 
pspsv of type C(a). 
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Proof. Now N is a psPW of type C(a) if and only if 

(45) AN [:IEE[.l (mod n) 

for some k.-ideal n with nn Z =(N). Since N is prime to a0A det(W), one 
finds from (42) and Proposition 2 that (45) is equivalent to 

(46) A _ CN (mod n). 

But from the argument of Theorem 2, (46) holds if and only if N is a Pspv 
of type C(a). n 

5. STRONGER PSEUDOPRIMES ASSOCIATED WITH RESOLVENT SEQUENCES 

Let L/k/Q be any normal tower of finite extensions with Galois groups 
F = G(L/Q) and H = G(L/k). Suppose x is a linear character of H of order 
s > 1 and K/k the cyclic subextension of L/k fixed by annihilator Ann(%). 
Fix a primitive s-root of unity 4. I shall assume that L n Q(4) = Q, so that 
Q = G(L(4)/Q) consists precisely of the maps qp e for p E F and 1 < e < s, 
(e,s)= 1,givenby 

kp,elL=P and Ipe (C) =e 

Fix an element a in the group H whose restriction to K generates G(K/k) 
- H/Ann(X) . To each v in H define a function A = A. on F by 

(47) pq/p1 (AnnX) = A(P) (AnnX) in H/ Ann(X) 

with 0 < A(p) < s. This map is well defined, since H < F. The function A is 
constant on the cosets of H in F. 

Now fix a generator 0 for K/k and form the Lagrange resolvents 

(48) 69p, = 69p, (6) 
= p(6) + 4C ppUP (p(6)) 

+ - - + C-(S- 
I)v P(s-Ip-I (p(f)) 

for integers v > 0 and p E F. As demonstrated in [10], one may, and I will, 
assume that the generator 0 for K/k is chosen so that each of the Lagrange 
resolvents $op V :A 0 for (v, s) = 1 and p E F. For the sake of simplicity, 0 
will be taken to be integral here. Since L n Q(4C) = Q, these Lagrange resolvents 
(48) satisfy for any p, T in F 

(49) OT, e (Cop, v ) tp Ipve 

Also, 

( 50O) (t) ( e(Q)) C=ve (6) 
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and 

(51) p(e(6)) =ve4) S 0 >V(6) 

for p E F and any integer e, where the primed sum is over a complete system 
of reduced residues modulo s . To establish (51), just note, since L n Q(o) = Q 
and 

(52) o(Q) (Dlv 

that 

p(a (O)) = ,0(s) 
X 

pvese(wI) 
) = /(s) 

from (49). 
Additional, deeper properties will be needed in characterizing the pseudo- 

primes. To begin, set for each v > 0 and p E F, 

(53) Ilp(v) = (cop v)s and yp r(v) = cop vr/(WJpv) 
r 

when (r, s) = 1. 

Proposition 7. For fixed v and any z E H and p E r, 

(54) W VA 
09 ifzT = aArT with ' E AnnX. 

In particular, 

(55) co 
PT, 

^=c0 
P' 

if TEAnn X, 

(56) ,BPT(V) = lP (V) if T E H. 

(57) YpT,r(V) = Yp,r(v) if T E H. 

Proof. To establish (54), observe that 

0J = PT(+) + vr(Q) + . .. + P-v(s-i) TU (6) 

=pU al(0) + r +-v I(0) + + -v(s- 1) Pa+s-1(0) 

since Ann(Z) fixes 0 . The last expression is just cop V (aA(0)), or 4vA wp' V (60) 

by (50). This yields (54). Formulas (55)-(57) now follow. n 

It is evident from (49) that the /3p(v) are mutually conjugate over Q in 

L(4), in fact, in k(4) by (56). If m is the number of distinct conjugates, then 
the flp(v) are roots of a minimal polynomial 

(58) p(x)= xm + a XMn ri + * + a0 

as in (1 3). Let k' be the field generated by l I (1), and T the subgroup of 

Q which fixes k'. The next series of results leads to a characterization of the 
subgroup T and to criteria for determining when 

9T 
(v) = flpWu). 
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First let l* denote the multiplicative inverse (mod s) for any / relatively 
prime to s. 

Proposition 8. There holds co,, = 
T 

w if and only if z E N.(Ann X), z(0)= 

0, and TaT- aT' for some z'eAnnX. 

Proof. To prove the implication -*, first write zaz- = a1z/ for some T E 

AnnX, since H < F. As ordH/AnnfX(z&-1) = s, one has (1, s) = 1 above. 
Next, note that if wT V= w , then 

T(W (0)) = <0(s) T,,U: (-(s) L? 4W1'Vl, 

__ 1 T 
iv ' jj/J 

r/i(s) E I ", = 
or 

(0), SO T(K) = K, 

or equivalently, T E N.(Ann X). Thus, 

c9T,)- T() + - TaT1 (T())) + *+ /- (S-i)TaS-1 I( (0 

= 0 + C 1Ta(0) +... + C IdS-1)(orT)S- (0) 

= 0 + 
-v 

a(0) +... + C-^(s-1) 1(s-1)(0) * 

In particular, / = v. 
For the reverse direction *-, (59) now holds with / = v, so cor 

T 
= CO 

Proposition 9. One has f3,(v) = ,6i(1) if and only if z E N,(AnnX) and 
TaT- =aovT/for some T'eAnnX. 

Proof. The equality flT(V) 
= fil(1) is equivalent to CgWT, V = WI, I for some 

o < g < s, by Proposition 7. Since SC9 = COTWgV* ^ = CO1 , by (54), the 

above holds by Proposition 8 precisely if T~gv (0) = 0 and T0uv gV -gV T-= 

T -1 (T = av z' for some T E Ann X. Since a E NF(Ann X), this last equivalence 

implies that /3T(v) = ,6i(l) if and only if z e NF(AnnX) and TaTr = a T 

for some z' E Ann X. o 

The next result gives criteria for deciding when flp(ii) = / (v). First, put 

xP(z)=x(p-VIp) forany peF and EH. 

Proposition 10. For any 1 < ?, v < s, (wv, s) = 1 and p, z E F, 

(60) flp (,) = flT (v) 

if and only if 

(61) (Xp)8 = (XT)V on H, 
which in turn holds if and only if 

(62) ip( -1q)EvA, $ 10) (mod s) 

for all V/ E H and X E F. 
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Proof. I shall verify the implications (60) -* (61) -* (62) -* (60) to prove the 
proposition. 

(60) -* (61): If fB(,u) = flT(v), then 
fliTIp(v*,u) 

= (1), so T Ip E 

NF(AnnX) and T-1pUp = aV fT for some ' E AnnX by Proposition 9. 

Thus, for any element Vi e pHp' , say Vi = pal fp 1 for some 0 < / < s and 
T in AnnX, x '(V)1 = X(ar-),U = x(aI)' and 

XT(y9V =X(-lpaIp-) V =x((a"1'r )17 p 1v 

= (U ),aX(T pTp T) = X( ,U. 

Since H = pHp 1, one has (X,)1' = (XT)V on H. 

(61) -? (62): If (XP)1' = (XT)V on H, then for any / E H 

X (p< 1I ,zp)1 =% (<- 
I 
VT)v 

Replacing Vi by qy0q-V1 for any q E F yields 

(63) X(p'1?q$iq$-1P),# = X(Tz'qV1?iqY' T)v 

But (63) holds if and only if (p'q1 0V0q p)# AnnX = (- 1 OVI1 )v AnnX, or 

(64) a1'i (p 'q5) - 

This last condition is equivalent to (62). 
(62) -- (60): Suppose now that (62) holds. Then for all q E IF and V/ E H, 

p-I0V'v*0q pAnnX= T i r10V/0 AnnX. 

Choosing 0 = p gives 

(65) Ann X=A T_ p l AnnX for all y'EH. 

In particular, T 'p(AnnX)p 'T = AnnX, SO T lp E Nr(Annx). Now write 

T Upap IT= 
a 

for some 0 < l 
< s and ' E AnnX. Then from (65), 

Uasv AnnX = zT paUp TAnnX = a Ann X, so / ,uv* (mod s) . By Proposi- 
tion 9 one now has ,I_,p1(,uV*) = ,8l(1), so /Bp(,u) = 

,BT(v) 
. 

Returning to the situation at hand, first observe that the subgroup T of Q 
fixing ,81 (1) has the form 

(66) T = 
10T vIT E Nr(AnnX) and TaTr1 = aU r for some T EAnnX}. 

Thus, ITI = INr(Ann X) I, so the index 

m = [Q: T] = rFIq(s)/ITI = [F: Nr(AnnX)] * 0(s). 

Fix a set &' of right coset representatives T = 1, zT2 Tm/O(s) for Nr(Ann X) 
in F. It follows from (66) that the set 
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is a complete set of right coset representatives for T in Q. Consequently, the 
linear sequence V given by 

(68) El4= E E I(v)n (n > O) 
V TEW 

is integer-valued and satisfies the recursion 

(69) Wn+M + am-1 Wa+m-+ +*+ aoWn =0 (n > 0). 

It has order m dividing [k Q] q$(s). If K/Q is normal and split at k, then 
0 may be chosen so that m = +(s), since Nr(AnnX) = F, so = {1}. Now 
set 

(70) VrI = E E y r(V) rvT/ 
)T(T (0< I < n-i ). 

V TE@ 

I claim that the values VY/ r I lie in k. Since the 
YT 

r(V) and flT(v) lie in k 
by (56) and (57), it is enough to show that the automorphisms 01 e of Q fix 
each Vy,ril* But 

?1 e(Vvr,) = E YTr(ve) 'flT (ve) 
V TEW 

= E E29 'r ):,rvA,(,(T' /) = VV rII 
V TEW 

I wish to give a stronger characterization of pseudoprimes with respect to 
resolvent sequences, such as V in (68), than was developed in the previous 
section. To this end, I first establish some properties V satisfies for prime 
moduli. 

Let p be a rational prime not dividing saA - A(L) and p any prime in 
L lying above p. Suppose p is the prime in k lying between p and p , say 
of residue degree f. From the usual transport of structure properties of the 
Frobenius map, one finds that the Artin symbol ((K/k)/p(p)) satisfies 

(71) (K/k ) A(P) AnnX for any p E F, 

where A is the function (47) corresponding to V = ((L/k)/p). 
Now express q = pf = st+ r with 0 < r < s and (r, s) = 1 . By the lemma 

in [10, p. 425], it follows that for any T, p in F, 

(72) fl-(v) = Yrr(V) (mod p(0)) in k(D). 

Taking p = 1 in (72) and summing, one finds that for 0 < / < m - 1, 

(73) JK+iEV,,rl (modip)ink, 

since, as was previously noted, the Vyi, r I lie in k. 
There is an equivalent way to express (73) in terms of matrices Cvi, r in 

MA(k) for V E H and 1 < r < s with (r, s) = 1. Let Xv, r = (XI, ..., XM) 
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be the unique solution of the linear system 
m 

(74) Exj(/3(v))' = Yr(v) ,(T) (T E < 1 < v<s, (v,s)= 1). 
j=1 

(As before in (29), one finds that the values Ax1 are integral, but now in k(C).) 
Applying any automorphism q = , e in Q to both sides of (49) for any fixed 
T and v yields, by (49), the equation 

m 
Eq$(Xj)/3T(ve)j)l = y (ve)crveu (&') 

j=I 

Thus, q(x ,r) also solves (74). Hence, q(x, , r) = XyI r from uniqueness, and 

therefore the xi lie in k. Now set 

(75) CV,r = MX for / E H and 1 < r < s, (r, s)= 1. 

Observe that from (74), 

(76) f l-(V) YI (V) Crvov(T 
9T (V) 

CV,r = Y, r()j 
,B (v )M ,I (v) 1 

(T E &,1< v < s, (v, s) =1), so that 

(77) C [ll = [j ] 1 

Evidently, from (76), the C ,Vr (y/ E H, 1 < r < s, (r, s) = 1) are seen to be 
distinct, and for any / E H, p E F, 

(78) P(CVr) =CpVzp- ,r 

It also follows from (76) that 

(79) C / ?T(V) _1 /(vr) 9 (V) 

9T (V) BI9T()M) 

so 

(80) Cs Ar = C 

where q = qr is that element of the Galois group G of the polynomial (58) 
given by mapping each fl (v) to flT(vr). 
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I am ready to give the matrix equivalent of (72). Since 

A t = [V ] wherep =st+r 

m-1 ~t+m-1 

with 1 < r < s, (r, s) = 1, it follows from Proposition 2 that (72) is equivalent 
to the congruence 

(81) At = Cr (mod p). 

The congruence (72), or its equivalent (81), is the basis upon which to char- 
acterize stronger pseudoprimes associated with the resolvent sequence V than 
were given in ?3. For this purpose, I shall henceforth assume that k/Q is 
Abelian, say of conductor F. Then k is a classfield corresponding to some 
group v of norm residues defined modulo F. From classfield theory, if M 
is the full group of reduced residues modulo F, then the residue degree f of 
the prime p is just the order of p in /V . I have required that k/Q be 
Abelian here to facilitate determining the residue degree of p in k. This can 
be done also for non-Abelian k/Q, but at the expense of introducing certain 
auxiliary linear sequences that are helpful in deciding the Artin class of p in 
k/Q (chiefly, on account of (27)). 

The sequence (Vf, r, 0 1 V, r, I - * . , Vr, m-1) in (70) will be referred to as 
an admissible signature for V of type (y , r) . Suppose N is a composite prime 
to 2aOAA(L) and to s. Let f be the order of N in 3I/sV, and suppose 

(82) Nf =st+r, 1 <r<s, (r,s)=1. 

Call N an s-pseudoprime with respect to V, denoted s-pspv, if the terms 
t, Vt+JI, ..., Vt+m-i match an admissible sequence signature for V (mod n) 

in k for some k-ideal n with n n Z = (N); that is, if 

(83) Vl_ ,,r/(mod n) (O < I < m - 1) 

in k for some Vg E H. An s- pspv N satisfying (83) is said to be of type 
(y/, r). 

Actually, one may define admissible sequence signatures (Vv, r ,) using any 
m fixed consecutive values on / here (and in (70)), not just 0, 1, ... , m - 1, 
and then take the corresponding terms (Vt+,) to define s-pseudoprimes in the 
same fashion. In the same way, one may let r run through any fixed complete 
set of reduced residues (mod s) with the appropriate modifications in the def- 
initions. I shall take this liberty later in some examples. In addition, I will 
illustrate how to relax the requirement that k/Q be Abelian, using an auxiliary 
sequence rather than a congruence condition to decide an appropriate "f" for 
N in expression (82). 
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Condition (83) defining the s- pspv's has equivalents analogous to (72) and 
(81). Namely, 

Theorem 4. A composite N with (N, 2a0sA -A(L)) = 1 satisfies (83) if and only 
if 

(84) At Cr (mod n), 

which in turn holds if and only iffor all T E F and (v, s) = 1 

(85) AI(v)-ylr(vr; (T) (mod ft) 

for any k(C)-ideal ft with i n k =n. 

Proof. I demonstrate that (85) (83) - (84) -? (85) to prove the result. 
(85) (83): This follows immediately from (70). 
(83) - (84): If (83) holds, then, arguing as in the proof of Theorem 2, one 

has At CV/, r (mod n), since N is prime to det(V) = A. 

(84) (85): If At _ C Vi r ( mod n), then from (76), 

1 1~ 1 At 
lT( 

] AT (V) [l ]V 

AlT(V) AlT(V)M_ 

(mod iI) 

( V -i J 
for all T E F and (v, s) = 1, where ft is any k(C)-ideal with f n k =n. Thus 
(85) holds modulo any such k(C)-ideal ft. O 

Corollary 5. Any s-pspv N of type (y/, r) with f = 1 is a pspv of type t1r 

and an ordinary pspc, where c = Iao l/s . 

Proof. Suppose N is an s- pspv of type (yi, r) . From Theorem 4, At Cyir 

(mod n) for some k-ideal n with n n Z = (N). Then by (80), 

(86) A -CV, rA --Cq1 (mod n), 

so if f = 1, N is a pspv of type tqr. Also from Theorem 4, 

Nf 
vr v 

rv)L (TK') 
r(v )= wl)/V/(w) N) - /(J w ) (modil) 

for some k(C)-ideal ft with ft n k = n. Hence, 

(87) W = W vrvAy,~ ) (mod 91) T 5V T~l 
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for some L(C)-ideal 91 with 91 n k(C) = t . Taking the product in (87) over 
TE & and 1 < v < s with (v, s) = 1, one obtains 

Nf 

(88) ( TV - TV (mod91). 

I assert that Y = Hl'> Ella cOT, V lies in Q and that c = IYIso that 

(89) C =_ c (mod N), 

since N is odd. Hence N is a pspc if f = 1. 
To prove the assertion that y lies in Q, it is enough to show that any qp$ e 

fixes y. For each T E F , write PT =cAfwhere c= EN (AnnX), Ec , and 
- 1 v(T) for T' E Ann and 0 < v(z) < s. Then from (49), 

1p, e (Y) rll I Wprve F Jp, V 
V W V W 

V F V F 

Thus, y lies in Q; in fact, YS = rl'VHl HBT(v) = (-1)mao, so c = Iy. This 
completes the proof of the corollary. o 

From (86) above one immediately has 

Corollary 6. Any s-Pspv N of type (y/, r) satisfies 

VNf +1 V Ir 
(mod n) (O < I < m-1 

for some k-ideal n with n n Z = (N). 

Now let r(x, V, 0) count the number of s- pspv's N with Artin symbol 
((k/Q)/N) = q that are less than or equal to x. In view of Corollary 5 one 
gets an upper bound for r(x, V, 1) as before from (1). Namely, if lao1 :$ 1, 
then 

(90) r(x, V, 1) < xexp{-logxlogloglogx/2loglogx} 

for all sufficiently large x. 
Actually, Pomerance's argument in the proof of Theorem 2 in [13] extends 

to give the samne upper bound for the number of composites N less than or 
equal to x which satisfy (89) for a given base c > 1 and fixed f > 1. Thus, 
more generally, one finds that 

Corollary 7. For any fixed q in G(k/Q), if laol :$ 1, then 

r(x, V, 0) < x exp{- logx logloglogx/2 loglogx} 

for all sufficiently large x. 

Aside from the upper bound given above, virtually nothing is known about 
the distribution of s- pspv's when m > 2. 
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Example 5. Consider q(x) = x5 - 75x3 - 375x2 -625x - 3125/11 with root 
0 and splitting field L = Q(Cll + C_'). Here, K =L, k = Q, and F= H is 
cyclic of order 5 generated, say, by a induced by the action C, - 431 . Taking 
any nontrivial character X of H, one sees that F = {1} in (68), since Q 
is Abelian. In addition, the function A., (p) = ,u in (47) for any p E F and 
O < u < s. Using 0/4 in place of 0 to define the Lagrange resolvents (48), 
one finds from (52) that the conjugates of 0 are just 

e(0) =e1 + C2e 2 o+i3 l 3 + W 01 4 (O < e < 4). 

The minimal polynomial for ,B = wc 1I, is p(x) = X- 4500x3/11+ 92500x2 - 

8696875x + 555 and k' = Q(C). The admissible signatures for the sequence 
Vn = fl1 (1)n +fl1 (2) +f1(3)n +l1 (4)n (n > 0) with fixed choice / =-1, 0, 1, 2 
are as follows: 

/ 
I I I V0I,/ 

V2 V3 V4 

-1 23/1331 -84/6655 -153/6655 58/6655 64/6655 
0 4 -1 -1 -1 -1 
1 4500/11 -2525/11 4425/11 -4550/11 -1850/11 

2 -2135000 -3679000 12607125 -11974750 5181625 
121 121 121 121 121 

VI, 2,1 Va, 2,1 
V2 V3 V4 

V1,2,a,2,l a 2,1 a 2,1 a 2,1 
-1 148/73205 -538/73205 449/73205 -601/73205 542/73205 

0 15/11 -9/11 2/11 -7/11 -1/11 

1 185 60 -40 -65 -140 
2 32250/11 338750/11 78500/11 -82125/11 -367375/11 

1 V2 V3 V4~~~V V/,-2,l Va _2,l a ,-2,1 Va3 ,2,l a4, 2,1 

-1 59/121 -2/121 -10/121 5/121 -52/121 
0 75 -30 -10 -40 5 
1 60300/11 -91825/11 -56825/11 -35075/11 123425/11 

2 -100573750 -237157500 -74741875 153435000 259038125 
121 121 121 121 121 

/ 
V2 V 3 V4 VI, -I I Va,-I, Ia -I,/ ar -I J a _I,/ 

-1 15/121 5/121 9/121 -19/121 -10/121 
0 30 -10 -5 -5 -10 
1 35875/11 -12900/11 -34425/11 38050/11 -26600/11 
2 -16447625 50381125 -101612000 103903625 -36225125 

121 121 121 121 121 
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Up to 2 31, there are 16 pseudoprimes for V, all of type (1,1) but one. These 
5- pspv's are listed below. 

N Factorization Type (, r) 
5049001 31 271 .601* (1, 1) 
5148001 41 241 .521* (1, 1) 

49019851 4951 *9901 (1, 1) 
82929001 281.421.701* (1, 1) 

139952671 131 *571 1871* (1, 1) 
216821881 331.661.991* (1, 1) 
382536001 31 71 . 151 . 1151* (1,1) 
392099401 29 139.211 .461* (1,1) 
625482001 241 1201 .2161* (1, 1) 
652969351 271 . 811 . 2971* (1,1) 

1024966801 12101 . 84701 (1, 1) 
1098000091 23431 * 46861 (1, 1) 
1317828601 41.181.311.571* (1, 1) 
1515785041 331 * 991 . 4621* (1, 1) 
1708549501 211.1741.4651* (1, 1) 

2487941 911 2731 (a, 1) 

*Q(C)-Carmichael numbers of type C(1). 

Example 6. Now consider k = Q(fl, v+'/ ), where /3 satisfies x3 -x - 1 = 0, 
and let K = k(fl 1/2) with splitting field L. Choose a character X of H which 
is nontrivial on G(K/k). Fix a in H with X(a) :$ 1, and let 3 generate 
Ann X. Then the subgroup H = G(L/k) a F = S4 is generated by 3 and a, 
with 

1: 
, /2 1 1/2 and 1f 

/2 1 1/2 

1/2 _fl1/2 1/2 21/2 
/2 /2 /2 /2 

1/2 _fl1/2 1/2 _fl1/2 

for an appropriate ordering of the roots of x3 - x - 1 with /31 = /B. Using 
0 = /31/2/2 to define the Lagrange resolvents (48), one finds that co , 1 = 12 

for any p in F. 
Next, fix coset representatives 1, p, p 2, T, Tp, Tp2 for H in F, where 

P:: /31 2 and T: /3i fl/ 

/2 - 3 32 ' 33 

93 fil933 9l2- 
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The functions A. on F defined by (47) are given in the table below. 

coset \ y 1 J a Ja 
H 0 0 1 1 

pH 0 1 1 0 

p2H 0 1 0 1 
TH 0 0 1 1 

TpH 0 1 1 0 

tp H 0 1 0 1 

Now Q = F here, Nr(AnnX) = HU TH, so k' = Q(fl) . The sequence V 
in (68) is just Vn = fl1 + 3l2 + fln, which was considered in Example 1. The 
admissible sequences for V of type (ya, 1) with fixed choice / = -1, 0, 1 are 
given below: 

- VI, I, I V15 . 1, I PVa .1U 1, I 

0 0 2fl, 292 293 
1 2 -2 + 2,B2 -2 + 2fl2 -2 + 2,B2 

Since k/Q is non-Abelian, it will be necessary here to determine an appro- 
priate choice for f in (82) for composite N in order to define 2- pspv's. A 
very convenient strategy is to first test whether or not N is a pspv. Given a 
composite N with (N, 2aOA *A(L)) = 1, let us say N is a 2- pspv of type 
(VI, 1) if 

(i) N is a pspv, say of type CQy) for some y in G(k/Q), and 
(ii) VNf+2l-1)/2-- OV (mod n) (1 = -1, 0, 1) for some k-ideal n with 

n n Z = (N) and V/ in H ,where f = ordG(k/Q) Y. 

It was mentioned in Example 1 that all 55 pspv's below 50 x 109 are of type 
C(1). Of these, 42 also satisfy condition (ii) and are thus 2-pspv's. The 
exceptions are those numbered 7, 13, 15, 17, 19, 23, 33, 37, 38, 39, 49, 52, and 
55 on Kurtz, Shanks and Williams' list [11]. 

An obvious question to consider here is just how scarce are s- pspv's com- 
pared with pspv's for the same resolvent sequence V. In Example 5 above I 
found that up to 2 there were roughly 13 times as many pspv's as 5- pspv's. 
Whereas in Example 6 most of the pspv's are 2- pspv's. This scant evidence, 
combined with observations I made while investigating 3- pspv's [9], seems to 
suggest that while s- pspv's are rarer than pspv's for the same resolvent se- 
quence, the relative improvement is modest. If one wishes to have far fewer 
pseudoprimes in a given range, it appears to be much more advantageous to 
replace the sequence V by another one associated with a polynomial having 
larger Galois group. 
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I would now like to extend the notion of higher-order pseudoprimes to other 
sequences satisfying the same recursion as V. Let us consider an integer se- 
quence W = (W,) satisfying (69). For a prime p not dividing 2aO* A(L), 
say with k-prime p lying above p of residue degree f and L-prime p above 
p, it follows from (74) that 

(91) Wt+I--Wvr, (mod p) (O <1< m -l 

where 

WV ,r, WO 
(92) [7 C Cyr 

-Wy{, r, m-1- - Wm_1-, 

in km. Here, pf = st + r with 1 < r < s, (r, s) = 1 as before with V = 

((L/k)/p). 
The sequence WV, r (< I < mr- 1) is the analogous admissible signature 

for W of type (yi, r). A composite N with (N, 2aOA A(L)) = 1 is called 
an s-pseudoprime with respect to W, denoted s- pspw, of type (Va r), if the 
terms 

(93) Wl_ ,,r/(mod n) (O < I < m - 1 

for some k-ideal n with n n Z = (N) . (Here again, Nf = st + r < r < s, 
(r, s) = 1 , where f is the order of N in I/V .) 

For the sequence U, given by ( 11) with the conjugates fl,(v) ordered, the 
admissible signature of type (Va, r) is given by 

(94) 
C 

i( 
V 

() YT )Yr(V)/A 
(V)I 

The characterization of these higher-order pseudoprimes using the sequence 
U or V is essentially the same. More generally, I note 

Theorem 5. Suppose W = (W4) is an integer sequence satisfying (69). For N 
satisfying (N, 2aOAdet(W).A(L)) = 1, N isan s-pspw of type (V/, r) if and 
only if N is an s- pspv of type (V/, r). 

I omit the proof of Theorem 5, since the argument is essentially the one used 
in the proof of Theorem 3, except now one uses (84) instead of (36). 
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